
Re-evaluating the Performance Trade-offs 
for Hash-Based Multi-Join Queries

Shiva Jahangiri
University of California, Irvine

shivaj@uci.edu

B4 P4 

B3 P3 

B2 P2 

B1 P1 

(a) 

B3 P3 

B4 P4 

B2 P2 

B1 P1 

(b) 

Motivation & Background
• The execution tree of multi-Join queries may take 

many different shapes, each utilizing the resources 
differently

• We study the performance of Left Deep Tree(LDT) and 
Right Deep Tree(RDT) query plans, memory 
distributions for join operators, intra-query 
concurrency under different memory availability,
and storage devices such as HDD and SSD 

• AsterixDB is used to re-evaluate the results of 
one of the early and impactful studies from the
1990s, utilizing both HDD and SSD Left Deep Tree Right Deep Tree

Results & Conclusions
• Importance of underlying storage device: With HDD, sequential plans have better response times due to lower 

disk contention while for SSD the higher concurrency leads to better response times due to the absence of arm-
related disk contention 

• Importance of verification of simulators: While useful, simulators may lead to incorrect conclusions if not 
verified against real systems carefully

• Importance of re-evaluation of previous studies: Our study shows that the re-evaluation of previous results is 
periodically necessary due to improvements in the underlying hardware 

0 0.2 0.4 0.6 0.8 1
Avail Mem / Mem For All 8 Joins

0

400

800

1200

1600
Right Deep Tree
Static Right Deep Tree
Sequential Right Deep Tree
Left Deep Tree

0 0.4 0.80.2 0.6 1
Avail Mem / Mem For All 8 Joins

0

50

100

150

200

250

Sequential Right Deep Tree
Right Deep Tree
Left Deep Tree
Static Right Deep Tree

(c) AsterixDB (SSD)(b) AsterixDB (HDD)

0 0.4 0.80.2 0.6 1
Avail Mem / Mem For All 8 Joins

0
45
90

135
180
225
270
315
360
405
450

R
es

po
ns

e 
Ti

m
e 

(S
ec

on
d)

Right Deep Tree
Left Deep Tree
Static Right Deep Tree

(a) Gamma Simulator (HDD)
(23%,80%)

(28%,84%)

(33%,86%)

(46%,82%)

(50%,89%) (51%,91%)

(Disk,CPU)

Limited Memory Experiment

• Dividing memory among all joins in RDT causes more random I/Os for RDT & higher disk contention (Fig. b)
• RDT takes advantage of concurrency in SSD in  case of more available memory

0 2 4 6 81 3 5 7
Number of Joins

0

100

200

300

400

500
Right Deep Tree
Sequential Right Deep Tree
Left Deep Tree

0 2 4 6 81 3 5 7
Number of Joins

0

20

40

60

80

100

120

140 Left Deep Tree
Sequential Right Deep Tree
Right Deep Tree

(c) AsterixDB (SSD)(b) AsterixDB (HDD)

0 2 4 6 81 3 5 7
Number of Joins

0

20

40

60

80

100

120

R
es

po
ns

e 
Ti

m
e 

(S
ec

on
d) Left Deep Tree

Right Deep Tree

(a) Gamma Simulator (HDD)

(40%,66%)

(32%,69%)

(36%,68%)

(44%,65%)

(51%,91%)

(51%,88%)
(Disk

,CPU)

Unlimited Memory Experiment

• Lower random disk accesses and lower disk contention are the key to the performance of HDD
• Higher concurrency is the key to the performance using SSD
• Results of Gamma Simulator from 1990 are closer to SSD than HDD (no disk contention simulation)

Query Plans:
• LDT: Low memory usage, less concurrent, 

less disk and CPU utilization
• RDT: High level of parallelism, high 

memory, disk, and CPU utilization

Memory Distributions & Concurrency Control:
• LDT: Only 2 joins at a time
• RDT: Equal memory distribution, concurrent build phases
• Sequential RDT: Equal memory distribution, sequential builds
• Static RDT: Bottom-up memory distribution, write intermediate 

results to  disk (break the tree) before spilling occurs


