
Re-evaluating the Performance Trade-offs 
for Hash-Based Multi-Join Queries

Shiva Jahangiri
University of California, Irvine

shivaj@uci.edu

B4 P4 

B3 P3 

B2 P2 

B1 P1 

(a) 

B3 P3 

B4 P4 

B2 P2 

B1 P1 

(b) 

Motivation & Background
• The execution tree of multi-Join queries may take 

many different shapes, each utilizing the resources 
differently

• We study the performance of Left Deep Tree(LDT) and 
Right Deep Tree(RDT) query plans, memory 
distributions for join operators, intra-query 
concurrency under different memory availability,
and storage devices such as HDD and SSD 

• AsterixDB is used to re-evaluate the results of 
one of the early and impactful studies from the
1990s, utilizing both HDD and SSD Left Deep Tree Right Deep Tree

Results & Conclusions
• Importance of underlying storage device: With HDD, sequential plans have better response times due to lower 

disk contention while for SSD the higher concurrency leads to better response times due to the absence of arm-
related disk contention 

• Importance of verification of simulators: While useful, simulators may lead to incorrect conclusions if not 
verified against real systems carefully

• Importance of re-evaluation of previous studies: Our study shows that the re-evaluation of previous results is 
periodically necessary due to improvements in the underlying hardware 
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Limited Memory Experiment

• Dividing memory among all joins in RDT causes more random I/Os for RDT & higher disk contention (Fig. b)
• RDT takes advantage of concurrency in SSD in  case of more available memory
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Unlimited Memory Experiment

• Lower random disk accesses and lower disk contention are the key to the performance of HDD
• Higher concurrency is the key to the performance using SSD
• Results of Gamma Simulator from 1990 are closer to SSD than HDD (no disk contention simulation)

Query Plans:
• LDT: Low memory usage, less concurrent, 

less disk and CPU utilization
• RDT: High level of parallelism, high 

memory, disk, and CPU utilization

Memory Distributions & Concurrency Control:
• LDT: Only 2 joins at a time
• RDT: Equal memory distribution, concurrent build phases
• Sequential RDT: Equal memory distribution, sequential builds
• Static RDT: Bottom-up memory distribution, write intermediate 

results to  disk (break the tree) before spilling occurs


