Supporting Database Constraints in Synthetic Data Generation based on Generative Adversarial Networks

Problem and Motivation

With unprecedented development in machine learning algorithms, it is
crucial to have available large amount of data to verify the correctness and
efficiency of these algorithms. Due to privacy concerns, we may not always
have enough real data to use; it is important to develop techniques to
generate synthetic data which are similar to the real world data. In our
research, we focus on data synthesization for relational databases where the
database constraints [1] of the original data must be imposed to the
generated data.

To the best of our knowledge, no study has been conducted on supporting
database constraints in synthetic data generation. Theoretically, we can
filter out records that violate database constraints after generation.
However, this can cause a large portion of the generated records being
thrown way. In this paper, we aim to significantly reduce the likelihood of
generating invalid records. We offer solutions by designing extensions to
Tabular Generative Adversarial Network (TGAN) [5] algorithm for supporting
database constraints. Specifically, we propose functions to encode database

constraints as additional penalties into the TGAN loss function. We designed -

and implemented a prototype for our approach, and compare the
performance of different extensions by a set of experiments.

Contributions

e Database constraints are represented by non-differentiable boolean
functions. Neural networks require loss functions to be differentiable. To
encode constraints as additional penalties to loss functions, we design
differentiable approximation functions which transform the satisfiability
of constraints into numerical values.

® \We propose scaling and combining methods in loss functions to account
for the differences among the original penalties related to the similarity
between the generated data and the original data, and the additional
penalties related to database constraints.

Extended TGAN Algorithm - Tables

Table 1: €;(X;) for categorical variables of the form of T.A — ¢ = (#)0 or

T.A-T.B = (#)0 for the table T(A, B), and c is the c‘" category of T.A.
|A| is the total number of categories of T.A. d;1 is a vector of the estimated

probabilities for A’s categories. d’; is the estimated probability for the ght

category of T.A. abs takes the absolute value. sum takes the sum of vector ments, B = —0.1,y = 1.
lements.
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Experimental Results

35 experiments have been performed with 5 settings (vertical) and 7
constraints (horizontal). The numbers of records violating database
constraints have been reduced by 22% to 100% with E4. The numbers of

invalid records can be summarized by the following table:
Table 3: €’1 is for categorical columns. €3, €4, €5, 8 are for continuous columns. €6

! - . o l\, ® ° -
d ¢, v 0 +nf d;; < argymaz d; and €7 are for a mix of continuous and categorical columns.

Table 2: additional penalty ap; for constraint €¢(X;). f < 0 and y > 0. In our experi-

Cdi s k' < argpmax uA . | - .
12122 012 % D W €1 | €3 | €4 | €5 | €6 | €7 | €3
@% D, ngoZ?ﬁg . output % | ¢y diy descnptlon
K> ~d;; - W do e | E1l: TGAN 947 | 1980 27 249 | 463 1241 | 5089
di. T E2: TGAN with (T), (III 928 | 346 | 836 | 316 | 809 | 2831 | 9713
o J \ s < E3: TGAN with (I), (I), (IIT); use gloss; | 166 | 451 0 0 10 | 1363 0
: E4: TGAN with (I) (II) (IIT); use glossz 179 | 231 1 0 30 968 0
Preprocessing rostprocessing E5: TGAN with (1I); use gloss, 201 | 281 | O 5 1 | 2302 | 5035
We divide original TGAN algorithm into four phases: preprocessing, training, generation and postprocessing.
In preprocessing, columns are divided into continuous and categorical columns. For each continuous columns a GMM model is built, and a probabllltyuffj Co n CI us I o n
for each record “u.j comlng from the kth Gaussian model is estimated. 1/; j s the normalized value of “i.j. Categorical records are represented by . . . o
one-hot encoding. d,J is the bmarylndlcator if d; ; comes from the kth category. In training, the generator takes Vlinc,js Uine,js Aimgj and iteratively We ConCIUde that expenments W|th E4 SEtt”’]g are the most pr0m|S|ng one
learns how to produce more qualified v1., . «}.,, . d}.,, ;. Finally, a well-trained generative adversarial network (GAN) is returned by the training process. . . . .
In generation, the trained GAN produces a final set of Ul Wi A, . IN postprocessing, the algorithm denormalizes and decodes the output from for fUtu relm provement The SUccess Of E4 can be JUSt|f|€d by the fOI IOWl ng:

generation, and combines (,J d:j into input format.

® To overcome the non-differentiability of argmax in original TGAN, we used

Extended TGAN Algorithm a consistent weighted sum of Gaussian models in preprocessing, training

and postprocessing.

Optimal changes are numbered using (1), (1), (III). Table 1 and 2 are given e Formulae in Table 2 are differentiable approximations to quantify the
in Extended TGAN Algorlthm Tables section. Satisfiabi“ty of the constraints.

m

o ( I)Inpreprocessing,vi; < > uilc;—n)/20;
® In training, for a given set of constraints €, we construct an additional

softmax is a differentiable approximation for AND, so is softmin for OR.

® The range fororiginal Joss is [0-+2c. The range forap is [-1,1]. (2) works
penalty term ap used in the loss function by the following steps: better than (1) as multiplication in (2) uses ap to penalizeoriginal _loss but
o Split € into atomic constraints (%, ... %) . For example, for a table T(A, B, addition in (1) can be problematic if ap and original_loss are not in the
C), ¢ = (T.A > T.Bor T.D # 3) will be split into {1=(T.A>2T.B),¢,=(T.D #3)} same scale.
O —
m Each %; is represented by an equation with 0 on the right hand side. There are many open problems in this area related to designing a general
For example, 7.4 = T.B will be transformed to 7.4 —T.B > 0 : €,(X;) > 0 approach for supporting any database constraints in the generation
and (X; = T.A-T.B,0p =>) . algorithms based on GAN. In the future work, we plan to explore new types

of constraints such as functional dependencies, foreign key constraints, etc.
The runtime of the GAN algorithms is also a real issue: the current
implementation based on TGAN, for some experiments, take hours to finish.
Lastly, it will be interesting to apply our extended TGAN algorithm into

m If X;involves continuous columns, the formulae for ¢:(X:) is given in
Table 1.
m (II) IfXt Involves continuous columns, the formula for : (xo) is% () = Xi(c, )

where Cu denote all referenced columns in X; and « .—Zu (20 0 + ). industrial pipelines.
th
m The formulae for the #" additional penalty ap, are given in Table 2.
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