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With unprecedented development in machine learning algorithms, it is 
crucial to have available large amount of data to verify the correctness and 
efficiency of these algorithms. Due to privacy concerns, we may not always 
have enough real data to use; it is important to develop techniques to 
generate synthetic data which are similar to the real world data. In our 
research, we focus on data synthesization for relational databases where the 
database constraints [1] of the original data must be imposed to the 
generated data.

To the best of our knowledge, no study has been conducted on supporting 
database constraints in synthetic data generation. Theoretically, we can 
filter out records that violate database constraints after generation. 
However, this can cause a large portion of the generated records being 
thrown way. In this paper, we aim to significantly reduce the likelihood of 
generating invalid records. We offer solutions by designing extensions to 
Tabular Generative Adversarial Network (TGAN) [5] algorithm for supporting 
database constraints. Specifically, we propose functions to encode database 
constraints as additional penalties into the TGAN loss function. We designed 
and implemented a prototype for our approach, and compare the 
performance of different extensions by a set of experiments. 

There are many open problems in this area related to designing a general 
approach for supporting any database constraints in the generation 
algorithms based on GAN. In the future work, we plan to explore new types 
of constraints such as functional dependencies, foreign key constraints, etc. 
The runtime of the GAN algorithms is also a real issue: the current 
implementation based on TGAN, for some experiments, take hours to finish. 
Lastly, it will be interesting to apply our extended TGAN algorithm into 
industrial pipelines.

This work has been done under the supervision of Dr. Anisoara Nica during 

my co-op internships at SAP Labs, Waterloo, Ontario, Canada.

Contributions 
● Database constraints are represented by non-differentiable boolean 

functions. Neural networks require loss functions to be differentiable. To 
encode constraints as additional penalties to loss functions, we design 
differentiable approximation functions which transform the satisfiability 
of constraints into numerical values.

● We propose scaling and combining methods in loss functions to account 
for the differences among the original penalties related to the similarity 
between the generated data and the original data, and the additional 
penalties related to database constraints.

Experimental Results
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Extended TGAN Algorithm
Optimal changes are numbered using (Ⅰ), (Ⅱ), (Ⅲ). Table 1 and 2 are given 
in Extended TGAN Algorithm - Tables section.
● (Ⅰ) In preprocessing,                                   .
● In training, for a given set of constraints    , we construct an additional 

penalty term      used in the loss function by the following steps: 

○ Split      into atomic constraints                 . For example, for a table T(A, B, 

C),                                            will be split into                                                   .

○ For      in 

■ Each      is represented by an equation with 0 on the right hand side. 

For example,                  will be transformed to                      :                  

and                                 .

■ If      involves continuous columns, the formulae for           is given in 

Table 1.

■ (Ⅱ) If Involves continuous columns, the formula for           is               

where      denote all referenced columns in      and                             .

■ The formulae for the        additional penalty        are given in Table 2.

■ The formula for the final       is obtained by combining       given the 

original constraint     : for example,                                then 

○ We experiment with two new generator loss functions:

■                                             (1)

■                                                (2)

○ (Ⅲ) In postprocessing,                               .

Extended TGAN Algorithm - Tables
 -

Conclusion
We conclude that experiments with E4 setting are the most promising one 
for future improvement. The success of E4 can be justified by the following:
● To overcome the non-differentiability of argmax in original TGAN, we used 

a consistent weighted sum of Gaussian models in preprocessing, training 
and postprocessing.

● Formulae in Table 2 are differentiable approximations to quantify the 
satisfiability of the constraints.

● softmax is a differentiable approximation for AND, so is softmin for OR.
● The range for                        is          . The range for     is [-1,1]. (2) works 

better than (1) as multiplication in (2) uses      to penalize                       but 
addition in (1) can be problematic if      and                        are not in the 
same scale.

We divide original TGAN algorithm into four phases: preprocessing, training, generation and postprocessing. 
In preprocessing, columns are divided into continuous and categorical columns. For each continuous columns, a GMM model is built, and a probability   
for each record         coming from the kth Gaussian model is estimated.         is the normalized value of         . Categorical records are represented by 
one-hot encoding.          is the binary indicator if         comes from the kth category.  In training, the generator takes                                        and iteratively 
learns how to produce more qualified                                  . Finally, a well-trained generative adversarial network (GAN) is returned by the training process. 
In generation, the trained GAN produces a final set of                                  . In postprocessing, the algorithm denormalizes and decodes the output from 
generation, and combines                 into input format. 
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35 experiments have been performed with 5 settings (vertical) and 7 
constraints (horizontal). The numbers of records violating database 
constraints have been reduced by 22% to 100% with E4. The numbers of 
invalid records can be summarized by the following table:
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