
Supporting Database Constraints in Synthetic Data Generation based on Generative Adversarial Networks
Wanxin Li

Cheriton School of Computer Science, University of Waterloo
Waterloo, Ontario, Canada

Problem and Motivation Original TGAN Algorithm

Future Directions

References

Acknowledgements

[1] W. Fan. Dependencies revisited for improving data quality. In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems PODS, pages 159–170, 2008.
[2] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim. Data synthesis based on generative adversarial networks. Proceedings of the VLDB

Endowment, 11(10):1071–1083, 2018.

[3] N.Patki,R.Wedge,and K.Veeramachaneni.The synthetic data vault.In 2016 IEEE International Conference on Data Science and Advanced Analytics

(DSAA), pages 399–410, 2016.

[4] J.Xu,Z.Zhang,T.Friedman,Y.Liang, and G.V.d.Broeck. A semantic loss function for deep learning with symbolic knowledge. pages 5498–5507, 2018.

[5] L. Xu and K. Veeramachaneni. Synthesizing tabular data using generative adversarial networks. arXiv preprint arXiv:1811.11264, 2018.

With unprecedented development in machine learning algorithms, it is
crucial to have available large amount of data to verify the correctness and
efficiency of these algorithms. Due to privacy concerns, we may not always
have enough real data to use; it is important to develop techniques to
generate synthetic data which are similar to the real world data. In our
research, we focus on data synthesization for relational databases where the
database constraints [1] of the original data must be imposed to the
generated data.

To the best of our knowledge, no study has been conducted on supporting
database constraints in synthetic data generation. Theoretically, we can
filter out records that violate database constraints after generation.
However, this can cause a large portion of the generated records being
thrown way. In this paper, we aim to significantly reduce the likelihood of
generating invalid records. We offer solutions by designing extensions to
Tabular Generative Adversarial Network (TGAN) [5] algorithm for supporting
database constraints. Specifically, we propose functions to encode database
constraints as additional penalties into the TGAN loss function. We designed
and implemented a prototype for our approach, and compare the
performance of different extensions by a set of experiments.

There are many open problems in this area related to designing a general
approach for supporting any database constraints in the generation
algorithms based on GAN. In the future work, we plan to explore new types
of constraints such as functional dependencies, foreign key constraints, etc.
The runtime of the GAN algorithms is also a real issue: the current
implementation based on TGAN, for some experiments, take hours to finish.
Lastly, it will be interesting to apply our extended TGAN algorithm into
industrial pipelines.

This work has been done under the supervision of Dr. Anisoara Nica during

my co-op internships at SAP Labs, Waterloo, Ontario, Canada.

Contributions
● Database constraints are represented by non-differentiable boolean

functions. Neural networks require loss functions to be differentiable. To
encode constraints as additional penalties to loss functions, we design
differentiable approximation functions which transform the satisfiability
of constraints into numerical values.

● We propose scaling and combining methods in loss functions to account
for the differences among the original penalties related to the similarity
between the generated data and the original data, and the additional
penalties related to database constraints.

Experimental Results

Buld GMM,

esti
mate probabilit

ies

norm
alize

one hot
encoding

output

output

Tr
ai
ni
ng

GAN
Gen

era
tion

co
ntin

uous,

denorm
aliz

e

categorical,

one hot decoding

collect

collect

Preprocessing Postprocessing

Extended TGAN Algorithm
Optimal changes are numbered using (Ⅰ), (Ⅱ), (Ⅲ). Table 1 and 2 are given
in Extended TGAN Algorithm - Tables section.
● (Ⅰ) In preprocessing, .
● In training, for a given set of constraints , we construct an additional

penalty term used in the loss function by the following steps:

○ Split into atomic constraints . For example, for a table T(A, B,

C), will be split into .

○ For in

■ Each is represented by an equation with 0 on the right hand side.

For example, will be transformed to :

and .

■ If involves continuous columns, the formulae for is given in

Table 1.

■ (Ⅱ) If Involves continuous columns, the formula for is

where denote all referenced columns in and .

■ The formulae for the additional penalty are given in Table 2.

■ The formula for the final is obtained by combining given the

original constraint : for example, then

○ We experiment with two new generator loss functions:

■ (1)

■ (2)

○ (Ⅲ) In postprocessing, .

Extended TGAN Algorithm - Tables
 -

Conclusion
We conclude that experiments with E4 setting are the most promising one
for future improvement. The success of E4 can be justified by the following:
● To overcome the non-differentiability of argmax in original TGAN, we used

a consistent weighted sum of Gaussian models in preprocessing, training
and postprocessing.

● Formulae in Table 2 are differentiable approximations to quantify the
satisfiability of the constraints.

● softmax is a differentiable approximation for AND, so is softmin for OR.
● The range for is . The range for is [-1,1]. (2) works

better than (1) as multiplication in (2) uses to penalize but
addition in (1) can be problematic if and are not in the
same scale.

We divide original TGAN algorithm into four phases: preprocessing, training, generation and postprocessing.
In preprocessing, columns are divided into continuous and categorical columns. For each continuous columns, a GMM model is built, and a probability
for each record coming from the kth Gaussian model is estimated. is the normalized value of . Categorical records are represented by
one-hot encoding. is the binary indicator if comes from the kth category. In training, the generator takes and iteratively
learns how to produce more qualified . Finally, a well-trained generative adversarial network (GAN) is returned by the training process.
In generation, the trained GAN produces a final set of . In postprocessing, the algorithm denormalizes and decodes the output from
generation, and combines into input format.

contin
uous

categorical

35 experiments have been performed with 5 settings (vertical) and 7
constraints (horizontal). The numbers of records violating database
constraints have been reduced by 22% to 100% with E4. The numbers of
invalid records can be summarized by the following table:

format,

output

