CENTER FOR

. . CHAIRFOR ADVANCING
HTE W coMPILER claed
CONSTRUCTION

Towards Scalable UDTFs in Noria“?

Contact: Justus Adam, Justus. Adam@tu-dresden.de

Research Challenges: User Defined Functions for distributed, incremental materialized views

 UDFs are a powerful extension point for databases * Materialized views offer fast read trough aggressive caching

* Third-party libraries, serialization, conversion * Incremental maintenance makes the slow writes more efficient
* Imperative source language with shared mutable state : Support incremental computations for UDF
* Table function and aggregation interfaces, are inherently stateful : Support sharding (parallelizing and

* The more state is used, the harder it is to parallelize or shard distribution) the UDF or risk being a bottleneck to scaling

Single-tuple UDF - ” INEremental
: : : ventually recompute on write
single input, single output consistent writes

Sharded compute nodes
Aggregation, Set-returning function «~7,1 with partitioned state
¥

multiple inputs or outputs User
|9, @)
Table Function [Fast Reads y Database
multiple inputs and outputs, only parallelizable Cached Results |

W”h Cldd Ihonql knOWIGdge Of the fUﬂC"'IOn |1'$e|f 1. Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbd Araujo, Martin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. 2018.

Noria: dynamic, partially-stateful data-flow for high- performance web applications. OSD/ 18.

Compilation Target and Strategy Data Parallelism

* The compilation target, a Noria query, is a graph (network) of Outer program after splitting

stateful operators fn click_ana(clicks: RowStream<i32, i32, i64>)

-> GroupedRows<1i32, 132> {
for (uid, group_stream) 1in group_by (0, clicks) {

* Communication via message passing let op® = Op@::init();
let opO_res = opO.run(sort_on(2, group_stream));

(uid, opO_res) T
State is no longer shared, i.e. only used once]

}
@? I [Here is also local to the loop iteration J
r D LI

Straightforward

* Operator state is private, not shared

translation
_ Y

[Enables data parallelism J
fn click_ana(clicks: RowStream<i32, 132, 164>)

-> GroupedRows<1i32, 132> { e @ @ @ . o .
for (uid, group_stream) in group_by (0, clicks) { With database primitives (like
let sequences = IntervalSequence::new(); @ @ @ @ group_by) the compiler additionally
f t, t ero -
or (_, ca Tme)j— 4 knows how to partition the input and
in sort on(2, group_stream) .
if xcat == 1 | Outer program to graph @ @ ShCIrd fhe ComprCﬂ'lon
sequences. open(*t1me)

} else if *xcat ==
sequences. close(*t1me)

} else { Flnd state
sequences.insert (xtime) | mutations and D
} e oty o | =t ‘ Preliminary Results
}ét;rid \dependencies/ bundle into
Sequences.iter() stateful operator Our novel technique can compile a subset of
.filter(Interval::is_bounded) imperative, stateful Rust to incrementally maintained views in a

.map(Interval::len)
.average())

dataflow engine

} * Supports Single-tuple UDFs, aggregations, table functions and
} 2. Sebastian Ertel, "Towards Implicit Parallel Programming for Systems." Dissertation, 2019 .
3. Sebastian Ertel, Justus Adam, Norman Rink, Andrés Goens, Jeronimo Castrillon, "STCLang: State Thread Composition as a Foundation sta nd d Ione q vueries
for Monadic Dataflow Parallelism." Haskell’19.
4000 - o o I
Parallelism and -
®
Incremental Operator State sharding is implicit and 30001 :

effortless - |
: : , * For our example query
* We require custom operator state mutations to be reversible

we are able to achieve 1000 -

Throughput (#requests/ms)

* This allows stateful operators (&) to be made incremental near linear scaling up to
automatically 3 shards. 0
2 4 6 8
v #Shards

Diminishing returns after 3 shards are likely caused by
orchestration overhead starting to dominate the small data size.

WISSENSCHAFTSRAT

cfaed.tu-dresden.de ()hmmas v) prg WR

DRESDEN concept R 4

