
Parallelism and
sharding is implicit and
effortless
• For our example query

we are able to achieve
near linear scaling up to
3 shards.

Our novel technique can compile a subset of
imperative, stateful Rust to incrementally maintained views in a
dataflow engine
• Supports Single-tuple UDFs, aggregations, table functions and

standalone queries

• Materialized views offer fast read trough aggressive caching

• Incremental maintenance makes the slow writes more efficient

Challenge 1: Compatibility: Support incremental computations for UDF

Challenge 2: Efficiency: Support sharding (parallelizing and
distribution) the UDF or risk being a bottleneck to scaling

1: Compatibility

2: Efficiency

Research Challenges: User Defined Functions for distributed, incremental materialized views

• UDFs are a powerful extension point for databases

• Third-party libraries, serialization, conversion

• Imperative source language with shared mutable state

• Table function and aggregation interfaces, are inherently stateful

• The more state is used, the harder it is to parallelize or shard

Towards Scalable UDTFs in Noria[1]
Contact: Justus Adam, Justus.Adam@tu-dresden.de

State

Parallelizing

Single-tuple UDF
single input, single output

Aggregation, Set-returning function
multiple inputs or outputs

Table Function
multiple inputs and outputs, only parallelizable
with additional knowledge of the function itself

Compilation Target and Strategy

DatabaseFast Reads

Eventually
consistent writes

Incremental
recompute on write

Sharded compute nodes
with partitioned state

Cached Results

2: Efficiency1: Compatibility

Data Parallelism

• The compilation target, a Noria query, is a graph (network) of
stateful operators

• Operator state is private, not shared

• Communication via message passing

Incremental Operator State

User

Preliminary Results

! Use parallelizing compiler (Ohua[2,3]) to split UDF program into

• Single “outer” program, without shared state, suitable for
transformation into the query graph

• Multiple ”inner” programs, using shared state internally,
suitable for forming the core of stateful operators

• We require custom operator state mutations to be reversible

• This allows stateful operators to be made incremental
automatically
! If a previously processed value is deleted, rerun operator
computation but revert modifications instead of applying them.

1. Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, MarCn Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. 2018.
Noria: dynamic, par/ally-stateful data-flow for high- performance web applica/ons. OSDI 18.

2. SebasCan Ertel, "Towards Implicit Parallel Programming for Systems." DissertaCon, 2019
3. SebasCan Ertel, Justus Adam, Norman Rink, Andrés Goens, Jeronimo Castrillon, "STCLang: State Thread ComposiCon as a FoundaCon

for Monadic Dataflow Parallelism." Haskell’19.

●

●

●

●
●

● ●
●

0

1000

2000

3000

4000

2 4 6 8
#Shards

Th
ro

ug
hp

ut
 (#

re
qu

es
ts

/m
s)

outer program to graph

Diminishing returns after 3 shards are likely caused by
orchestration overhead starting to dominate the small data size.

Sequence index
becomes state
partition index

Exploiting loop local state
and sequence partitioning

Straightforward
translation

Enables data parallelism

State is no longer shared, i.e. only used once

Find state
mutations and
recursively find
dependencies bundle into

stateful operator

2: Efficiency

1: Compatibility

With database primitives (like
group_by) the compiler additionally
knows how to partition the input and
shard the computation

Here is also local to the loop iteration

Outer program after splitting

